Integrated Platform


The four modules of the Surflex Platform (Tools, Similarity, Docking, and Affinity) are fully integrated. The full software bundle provides a comprehensive predictive modeling workflow:

  • 2D to 3D molecular conversion, with accurate chirality interpretation and enumeration facilities
  • Conformer elaboration including complex macrocycles, also supporting the use of NMR restraints
  • Protein structure preparation and alignment
  • Docking for pose prediction or virtual screening
  • Docking for pose prediction or virtual screening

Software is available for Windows, Linux, and Mac platforms, with easy deployment across on-premises workstations and laptops as well as cloud-based computing resources.

Tools Module: ForceGen methodology

Docking Module: Virtual screening and highly accurate pose prediction

Similarity Module: eSim method for virtual screening and multiple ligand alignment

Affinity Module: Machine learning using QuanSA

What’s New?


Version 5.0 Surflex Platform Released
April 15, 2020

Surflex Platform v5.0 includes improvements in the use of known crystallographic poses to help guide multiple-ligand alignment and in the iterative refinement process for QuanSA model building.

JCIM: Improvements in Docking
April 9, 2020

The latest improvements in Surflex-Dock, especially with respect to virtual screening, has been published in a special issue of JCIM. Ensemble docking is shown to produce much better results than single-structure docking on the DUD-E+ benchmark. Ligand-based methods employing eSim are shown to be competitive as well. Hybrid approaches are much better than single-mode approaches.

JCAMD: The eSim  Similarity Method
October 24, 2019

We have published, with Stephen Johnson, a new 3D molecular similarity method (called eSim) that directly incorporates Coulombic field comparison with surface-shape and hydrogen-bonding comparison. It is both faster and more accurate that commonly used alternatives, both for virtual screening and pose prediction. The paper is entitled “Electrostatic-field and surface-shape similarity for virtual screening and pose prediction.”

JCAMD: ForceGen on Complex Macrocycles
May 25, 2019

We have published a new macrocycle-focused paper with Edward C. Sherer, Mikhail Y. Reibarkh, Qi Gao, Xiao Wang, and Yizhou Liu. The paper is entitled “Complex macrocycle exploration: Parallel, heuristic, and constraint-based conformer generation using ForceGen.” Extensive benchmarking results show seconds to minutes conformer elaboration for typical drug-like macrocycles and accurate ensemble generation for large peptidic macrocycles through the use of NMR-based constraints.